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Models for predicting oral drug absorption kinetics were developed by correlating absorption rate constants
in humans (Ka) with computational molecular descriptors. TheKa values of a set of 22 passively absorbed
drugs were derived from human plasma time-concentration profiles using a deconvolution approach. The
Ka values correlated well with experimental values of fraction of dose absorbed in humans (FA), better than
the values of human jejunal permeability (Peff) which have previously been used to assess thein ViVo
absorption kinetics of drugs. The relationships between theKa values of the 22 structurally diverse drugs
and computational molecular descriptors were established with PLS analysis. The analysis showed that the
most important parameters describing logKa were polar surface area (PSA), number of hydrogen bond
donors (HBD), and logD at a physiologically relevant pH. Combining logD at pH 6.0 with PSA or HBD
resulted in models withQ2 andR2 values ranging from 0.74 to 0.76. An external data set of 169 compounds
demonstrated that the models were able to predictKa values that correlated well with experimental FA
values. Thus, it was shown that, using a combination of only two computational molecular descriptors, it is
possible to predict with good accuracy theKa value for a new drug candidate.

Introduction

Early prediction of human intestinal absorption kinetics is
important in the selection of potential orally active drugs. The
rate and extent of intestinal absorption are mainly dependent
on the dissolution rate of the drug in the gastrointestinal fluids
and the rate of transport across the intestinal membrane. It has
been hypothesized that the predominant process of absorption
for most conventional drugs is passive diffusion,1 which is often
described by the permeability coefficient (10-6 cm/s). It is
noteworthy that although influx and efflux transporters also have
a role in the absorption of some drugs,2,3 an active transport
process is not always quantitatively significant in thein ViVo
absorption of a drug.

In ViVo animal studies and epithelial cell culture models are
both used routinely for the assessment of intestinal drug
permeability. However, these techniques are costly and labori-
ous. Several recent studies have shown that physicochemical
descriptors of molecules such as lipophilicity, polar surface area
(PSA), and hydrogen bonding descriptors correlate with cell
culture permeabilities and intestinal absorption.4-7 This relation-
ship between molecular descriptors and permeability facilitates
the prediction of absorption because the descriptors of a
molecule can be rapidly calculated with computational methods.

The fraction of dose absorbed in humans (FA), which
describes the extent of the dose that crosses the intestinal wall,
has been modeled in several studies. Using a set of 20 passively
absorbed drugs, Palm and co-workers8 showed that the calcu-
lated dynamic PSA has a sigmoidal relationship with FA. In

many studies, multiparameter equations for predicting FA have
been developed by correlating various molecular descriptors to
FA values.4-6 In the work of Zhao and co-workers,5,6 five
Abraham molecular descriptors were successfully used to model
the FA values of 169 diffusion rate-limited drugs.

Human jejunal permeability (Peff) is another parameter that
has been correlated with physicochemical descriptors of
molecules.9-11 Winiwarter and co-workers,9 using multivariate
data analysis, correlated thePeff values of a set of 13 passively
absorbed compounds to several physicochemical descriptors.
This analysis, although performed using a limited number of
compounds, yielded three models with good statistics. The most
important molecular descriptors in determining thePeff values
of the 13 drugs were found to be the number of hydrogen bond
donors (HBD), PSA, and the lipophilicity descriptors. The study
of Winiwarter and co-workers9 demonstrates that the method
of determining human jejunalPeff, although too complicated
for routine assessment of a compound’s intestinal absorption,
is a tool that can be used to increase our understanding of the
absorption process. However, considering the limited number
of compounds for whichPeff has been determined, the consider-
able error associated with thePeff value measurements,3 and
the fact thatPeff values do not correlate very well with FA (an
analysis performed in this study), it is obvious that the study of
the relationships between absorption kinetics and molecular
descriptors should be based on a more practical and reliable
method than the human jejunal perfusion system.

The present study is the first investigation that correlates the
physicochemistry of passively absorbed drugs with human
intestinal absorption rate constants (Ka) derived using decon-
volution analysis, an approach that is commonly used in the
assessment of drug release and drug absorption from orally
administered drug formulations. In the deconvolution approach,
the plasma time-concentration profile following intravenous
(iv) administration is subtracted from the plasma time-
concentration obtained following oral (po) administration. This
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results in information about the overall rate of absorption as
such. The deconvolution approach provides more information
about the kinetics of absorption throughout the entire intestine
than the jejunal perfusion system, which measuresPeff in only
a 10-cm segment of the jejunum.

In this work the deconvolution method was used to determine
the Ka values of 23 structurally diverse drugs from iv and po
data of clinical studies. Our main aim was to derive a
quantitative structure-property relationship (QSPR) equation
which, on the basis of simple rapidly computed molecular
descriptors, would allow the prediction of theKa value of a
predominantly passively absorbed drug in the human intestine.

Materials and Methods

Compound Data Sets.Two data sets of compounds were used
in this study. Data set 1 consisted of 23 structurally diverse
compounds (Table 1, Figure 1) for which the iv and po plasma
time-concentration profiles required for the calculation ofKa values
were available. The drugs selected for data set 1 (selection described
in the following section) are absorbed predominantly by a passive
process, and the rate of absorption is limited by diffusion, not
dissolution. The data set covers a fairly broad range of absorption
in humans (Table 2). Data set 2 consisted of the 23 compounds in
data set 1 and an additional 147 compounds. All compounds from

a data set used by Zhao and co-workers to model diffusion rate-
limited drug absorption in the human intestine (FA) were included
in data set 2. The only drug which was not taken from the data set
used by Zhao and co-workers was eflornithine, which also belongs
to data set 1.

Selecting the Compounds for Data Set 1.The drugs in data
set 1 were selected on the basis of the following requirements: (1)
diffusion, not dissolution, limits absorption; (2) a reliable FA value
is available; (3) passive diffusion is the predominant process of
absorption; (4) iv and po profiles required for the deconvolution
analysis are available. Since all compounds in the large data set of
Zhao and co-workers6 fulfilled the first two requirements, an
extensive literature search was carried out to find iv and po plasma
time-concentration profiles for these 169 compounds. Studies in
which both the iv and po pharmacokinetics of a drug had been
investigated in the same healthy volunteers were primarily searched
for.

This search yielded the plasma time-concentration profiles of
35 drugs. The meager result of the search was not solely due to
the lack of studies in which the iv and po pharmacokinetics of a
drug were investigated but also due to the fact that plasma time-
concentration profiles were not always reported. The decision to
exclude actively transported drugs and drugs administered as
formulations that may limit the rate of absorption reduced the
number of drugs accepted for data set 1 from 35 to 23. Indications

Table 1. Molecular Descriptors for Drugs in Data Set 1

drug MW PSA HBD HBA ClogP ACDlogP exp logD7.4
x ACDlogD7.4 ACDlogD6.5 ACDlogD6.0 ACDlogD5.5

acetaminophen 151 56 2 3 0.49 0.34 0.51a 0.34 0.34 0.34 0.34
acetylsalicylic acid 180 60 1 4 1.02 1.19 -1.90b -1.89 -1.59 -1.24 -0.80
antipyrine 188 24 0 3 0.41 0.27 0.41c 0.27 0.27 0.27 0.27
atenolol 266 93 4 5 -0.11 0.10 -1.68d -1.66 -2.44 -2.74 -2.90
bumetanide 364 121 4 7 3.90 2.78 0.10e -0.21 0.29 0.71 1.15
caffeine 194 47 0 6 -0.06 -0.13 -0.03f -0.13 -0.13 -0.13 -0.13
cimetidine 252 84 3 6 0.35 0.26 0.21g 0.11 -0.37 -0.79 -1.23
eflornithine 182 94 3 4 -3.00 0.30 h -2.30 -2.62 -2.87 -3.06
famotidine 337 182 8 9 -0.56 -0.40 -1.11i -1.02 -1.74 -2.06 -2.26
felodipine 384 60 1 5 4.96 4.83 4.20j 4.83 4.83 4.82 4.80
furosemide 331 126 4 7 1.87 3.00 -0.92k -0.12 0.02 0.26 0.62
hydrocortisone 362 96 3 5 1.70 1.43 1.54l 1.43 1.43 1.43 1.43
ibuprofen 206 40 1 2 3.68 3.72 0.88m 0.80 1.64 2.12 2.60
lamivudine 229 93 3 6 -1.54 -0.72 -0.92n -0.71 -0.72 -0.72 -0.72
ondansetron 293 31 0 4 2.64 2.49 2.30o 2.14 1.46 1.02 0.61
oxprenolol 265 53 2 4 1.69 2.29 0.18p 0.57 -0.22 -0.53 -0.70
pindolol 248 63 3 4 1.67 1.97 0.09q 0.18 -0.59 -0.88 -1.03
scopolamine 303 61 1 5 0.26 1.34 0.21r 0.63 -0.18 -0.64 -1.07
sotalol 272 85 3 5 0.23 0.32 -1.38s -1.46 -2.23 -2.52 -2.68
sumatriptan 295 75 2 5 0.58 0.67 -1.06t -1.38 -2.07 -2.28 -2.38
terbutaline 225 80 4 4 0.48 0.48 -1.29u -1.31 -2.07 -2.36 -2.52
theophylline 180 64 1 6 -0.06 -0.17 -0.03V -0.20 -0.18 -0.18 -0.18
valproic acid 144 40 1 2 2.76 2.72 0.13w 0.16 1.03 1.51 1.95

a References 12-14. b References 14-16. c References 9, 12, 14, and 16.d References 9 and 13-18. e References 1, 14, and 19.f References 1, 12, 14,
15, and 18.g References 12, 14, 15, and 17.h Experimental logD7.4 not available.i Experimental logD at pH 6.5, ref 20.j References 13, 17, and 21.
k References 9, 13, 14, and 18.l References 12-16. m References 14 and 16.n Reference 22.o Reference 17.p References 13 and 16.q References 14-16.
r Reference 15.s References 12 and 14.t References 12, 13, 23, and 24.u References 9, 12, 14, and 15.V References 13, 14, and 16.w Reference 13.x The
experimental (exp) logD7.4 values are averages of the values from several articles.

Figure 1. PCA score plot showing the second PC (t2) against the first PC (t1) for the 170 compounds in data set 2. Triangles indicate the compounds
corresponding to the 23 compounds in data set 1. Drugs denoted by open triangles belong to the training set used in validating the predictivity of
the models.
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of the drugs being substrates of active or efflux transporters were
searched for from the literature. The transporter database complied
by Ozawa and co-workers51 was used as an aid in this process.
Evidence of active and efflux transport was found for several of
the drugs. Passive diffusion was, however, considered to be the
predominant process of absorption for all of the drugs chosen for
data set 1.

Zhao and co-workers6 inferred, on the basis of computational
solubility, dose, and FA, that the rate of absorption of the drugs in
their data set was limited by diffusion. However, since we wanted
to be sure that the rate of absorption of the drugs in the present
study was limited by diffusion and not dissolution, we performed
a further analysis to determine the rate-limiting step of absorption.
For those drugs that had been administered orally as a formulation
other than a solution, suspension or a rapidly disintegrating tablet,
we searched the literature for a study in which the drug had been
administered as a solution. If the study in which the drug had been
administered as a solution showed that the time to reach peak
concentration (tmax) was the same (difference intmax not more than
25%) for the solution as for the other formulation, e.g., tablet, the
po data of the tablet formulation were accepted for the deconvo-
lution analysis. However, if thetmax of the tablet was reached later
(difference intmax over 25%) than thetmax of the solution, the po
data were taken from the study in which the drug had been
administered as a solution. In the latter case, the iv and po profiles
were not obtained from the same healthy volunteers. Details of the
studies from which the iv and po plasma time-concentration
profiles were obtained are given in Table 2.

Human Intestinal Absorption Data. The experimental FA
values for the 23 drugs in data set 1 (Table 2) were taken from the
reports providing the iv and po profiles of the drug. However, if
the FA value was not given in the report, the FA value was taken
from the work of Zhao and co-workers.6 Cimetidine’s FA value
was obtained from the work of Bodemar and co-workers,52 and
felodipine’s FA value, from the work of Wessel and co-workers.4

The FA values of the compounds in data set 2 that did not belong
to data set 1 were obtained from the work of Zhao and co-workers.6

Determination of Absorption Rate Constants.For the 23 drugs
in data set 1, the deconvolution module in the software WinNonlin53

was used to determine theKa values from the iv and po plasma
time-concentration profiles. To determine the absorption process
following oral administration of a drug, WinNonlin uses the
principle of deconvolution through convolution. The extent of drug
input is given in terms of fraction input (A(t)), which is defined, in
a nonextrapolated way, as the fraction of drug input at timet relative
to the amount of input at the last sample timetend:

At the last observation timetend, A(t) will by definition have a value
of 1. This value should not be confused with the fraction input
relative to the dose.

The absorption of all drugs in data set 1 was found to follow
first-order absorption, after a possible short lag time (tlag), until the
time point at whichA(t) reached the value of 0.75 (t0.75absorbed)
(Figure 2). Thus, the fraction input profiles obtained by deconvo-
lution analysis could be fitted to eq 2 to yield the rate constant
describing the loss of drug from the site of absorption (Kapp)

whereA(t) is the fraction of drug input at timet (t0.75absorbedg t g
tlag) relative to the amount of input at the last sample time.

To obtain theKa value of each drug in data set 1, theKappvalues
acquired from the fraction input profiles were multiplied by
experimental FA values.

The FA values used in the calculation of theKa values are given in
Table 2.

The exact data points of the iv and po drug plasma time-
concentrations profiles were required for the deconvolution analysis.
If these points were not given in the reports on the pharmacokinetics
of the drug, they were obtained from the graphs provided by the
reports.

Table 2. Experimental FA Values, Values of Rate Constants Derived from Deconvolution Analysis, and Details of Clinical Data Used in Deconvolution
Analysis

drug FA Kapp(h-1) Ka (h-1) log Ka (h-1) lag time (min) no of volunteers in clinical studya

acetaminophen 0.87 3.354 2.918 0.465 18b

acetylsalicylic acid 1.0 6.228 6.228 0.794 3 6c

antipyrine 1.0 6.420 6.420 0.807 6 6d

atenolol 0.54 0.470 0.254 -0.596 12e

bumetanide 1.0 1.356 1.356 0.132 3 12f

caffeine 1.0 4.296 4.296 0.633 10g

cimetidine 0.76 0.870 0.661 -0.180 4 12h

eflornithine 0.55 0.265 0.146 -0.836 36 6i

famotidine 0.43 0.504 0.217 -0.664 9 16j

felodipine 1.0 4.512 4.512 0.654 11 10k

furosemide 0.61 0.756 0.461 -0.336 1 18l

hydrocortisone 0.96 3.792 3.640 0.561 1 8m/15n

ibuprofen 1.0 2.670 2.670 0.427 1 8o/15p

lamivudine 0.87 1.086 0.945 -0.025 6 12q

ondansetron 1.0 1.890 1.890 0.276 26 5r

oxprenolol 0.80 3.318 2.654 0.424 3 6s

pindolol 0.87 1.380 1.201 0.079 10 6t

scopolamine 0.95 1.644 1.562 0.194 6u

sotalol 1.0 0.535 0.535 -0.271 19 7V

sumatriptan 0.57 0.408 0.233 -0.633 10 18w

terbutaline 0.73 0.450 0.329 -0.483 4 6x

theophylline 0.99 2.364 2.340 0.369 20y/10y

valproic acid 1.0 4.128 4.128 0.616 4 6z/14aa

a If two values are given, the iv and po data were not obtained from the same volunteers. The first value shows the number of volunteers in the iv study,
and the second, the number of volunteers in the po study.b Reference 25. Iv and po data given for a representative subject.c Reference 26.d Reference 27.
Iv and po data given for one subject.e Reference 28.f Reference 29.g Reference 30.h Reference 31.i Reference 32.j Reference 33.k Reference 34.l Reference
35. m Reference 36.n Reference 37.o Reference 38.p Reference 39.q Reference 40. Volunteers were infected with HIV. The volunteers were only accepted
if their HIV status was asymptomatic, or they had no symptoms more severe than persistent generalized lymphadenopathy.r Reference 41.s Reference 42.
t Reference 43.u Reference 44.V Reference 45.w Reference 46.x Reference 47.y Reference 48. 20 asthmatic volunteers in the iv study and 10 of them in the
po study.z Reference 49.aa Reference 50.

A(t) ) ∫0

t
f(t) dt/∫0

tend
f(t) dt (1)

A(t) ) 1 - e-Kapp(t-tlag) (2)

Ka) Kapp(FA) (3)
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The mean unit impulse response parameters (macro-rate constants
associated with the distribution and elimination phases) required
for the deconvolution analysis were estimated from the plasma
concentration-time data following iv bolus or infusion input using
one of the compartmental models in the WinNonlin PK library.
The appropriate model was chosen on the basis of best fit.

Molecular Descriptors. The values for the logarithms of the
octanol-water partition coefficients of the neutral form (ACDlogP)
and at pH 7.4, 6.5, 6.0, and 5.5 (ACDlogD7.4, ACDlogD6.5,

ACDlogD6.0, and ACDlogD5.5) were calculated with the ACD/Labs
LogP and LogD software packages.54 The prediction of logP/log
D by the ACD/Labs program is based on a structure fragment
approach. The molecular structures were imported from the ACD/
dictionary or drawn in ACD/ChemSketch.55 The experimental log
D values at pH 7.4 (logD7.4) were taken from the literature. The
values for the molecular weights (MWs) were taken from ACD/
ChemSketch.

The values for the PSA, HBD, number of hydrogen bond
acceptors (HBA), and ClogP were taken from the work of Zhao
and co-workers,5 who obtained these values with the following
calculations. PSA was calculated using the SAVOL program.56

HBD and HBA values were counted from the molecular structure
of the drug so that hydrogen-bonding donors were any of the O-H
or N-H groups and hydrogen-bonding acceptors were any of the
O or N atoms, including those in the donor groups. ClogP was
calculated usingClogP for Windowssoftware.57 All the molecular
descriptor values of the drugs in data set 1 are given in Table 1.

Multivariate Data Analysis. Multivariate data analyses were
performed with Simca-P58 using the default settings. The molecular
diversity of the compounds in data set 1 was analyzed with principal
component analysis (PCA). This analysis was based on the 170
compounds in data set 2 and the five molecular descriptors MW,
ClogP, HBD, HBA, and PSA that have been shown to be relevant
to oral absorption in earlier studies.8,9,59

The relationships between the logKa values and the molecular
descriptors (Table 1) of the drugs in data set 1 were determined by
Partial Least Squares (PLS) analysis. The final models were built
using 22 of the 23 compounds in that data set. Cross-validation
was performed to quantify the predictive capability of the derived
PLS models. The predictivity of the models was further validated
by dividing data set 1 into a training set and a test set. The training
set was selected by identifying eight representative compounds from
the score plot (Figure 1).

Correlating ACDlogD Values with Experimental log D
Values. The ACDlogD7.4 values of the compounds used in our
analyses were correlated to their experimental logD7.4 values. An
extensive literature search yielded the experimental logD7.4 values
for 22 of the 23 compounds in data set 1 (values given in Table 1)

and for 85 of the 170 compounds in data set 2 (values given in the
Supporting Information).

Correlating Predicted log Ka Values with Experimental FA
Values. The PLS models developed here were further tested by
using them to predict the logKa values of the drugs in data set 2.
The predicted logKa values were then plotted against the
experimental FA values of the drugs. An ideal relationship between
log Ka and FA was calculated with a compartmental absorption
and transit (CAT) model equation based on the CAT model
developed by Amidon’s group.60

Amidon and co-workers have evaluated the original CAT model
equation usingPeff values. Equation 4 was obtained from the
original equation on the basis of the relationships prevailing between
Ka andPeff. Equation 4 assumes that the radius of the intestine is
1.2 cm instead of 1.75 cm which was used by Amidon’s group. A
radius of 1.2 cm is also used by the commercial GastroPlus
program61 developed on the basis of the CAT model.

Results

Structural Diversity of the Drugs. PCA was performed to
ensure that the 23 compounds in data set 1 were structurally
representative of the 170 compounds in data set 2. The PCA
resulted in two principal components explaining 94% of the
variance in the data set. The first principal component explained
75.4%, and the second 18.6% of the variance. Figure 1 shows
the score plot of the 170 compounds in data set 2. All 23
compounds in data set 1 (denoted by triangles) lie within the
elliptic 95% tolerance volume, indicating that there are no
outliers in the score space. The compounds in data set 1 are
reasonably well separated, implying that they are representative
of the drugs in data set 2.

Determined Kapp and Ka Values.The Kapp values obtained
by fitting eq 2 to the fraction input profiles (Figure 2) are given
in Table 2. The loss of drug from the site of absorption followed
first-order kinetics fairly nicely for all the drugs in data set 1
(R2 values ranged from 0.94 to 1.00) until the time point at
whichA(t) reached the value of 0.75. TheKa values, determined
by multiplying theKapp values by experimental FA values, are
also listed in Table 2. TheKa values ranged from 0.15 h-1

(eflornithine) to 6.42 h-1 (antipyrine).
QSPR Model Development and Validation.The relation-

ships between the logKa values of the drugs in data set 1 and
the calculated molecular descriptors were determined with PLS
analysis. Before performing the multivariate analyses, the linear
correlation between logKa and each molecular descriptor was
calculated (Table 3). The best correlations were obtained with
the logD descriptors, HBD, and PSA.

The first PLS model (R2 ) 0.68 andQ2 ) 0.62) was built
using all the molecular descriptors found in Table 1. The variable

Figure 2. Semilog plots of fraction unabsorbed (1- fraction input)
versus time profiles obtained from deconvolution analyses of drugs in
data set 1.Kapp is the slope of the plots. The possible short lag times
before absorption are not shown in this figure.

Table 3. R2 (Ordinary Correlation Coefficient) andQ2 (Cross-validated
Correlation Coefficient) Values Obtained from Correlations between log
Ka and Each Individual Molecular Descriptor

parameter Q2 R2

exp logD7.4 0.35 0.48
ACDlogD7.4 0.34 0.49
ACDlogD6.5 0.49 0.60
ACDlogD6.0 0.54 0.61
ACDlogD5.5 0.55 0.59
ACDlogP 0.12 0.15
ClogP 0.25 0.28
PSA 0.40 0.43
HBD 0.46 0.49
HBA 0.06 0.17
MW -0.10 0.03

FA ) 1 - (1 + 0.32Ka)
-7 (4)
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influence on projection (VIP) function available in Simca-P was
then used to determine the descriptors that best explained log
Ka in the PLS model. The descriptors with VIP values over 1
have an above average influence on logKa. Inspection of the
VIP plot (Figure 3) showed that the logD descriptors, HBD,
and PSA had VIP values above 1. MW had the lowest VIP
value. Of the logD descriptors, ACDlogD6.0 had the highest
and ACDlogD7.4 the lowest VIP value.

Since the descriptors with VIP values over 1 were the same
ones that gave good correlations with logKa on their own, we
decided to exclude the descriptors with VIP values smaller than
1 (ClogP, ACDlogP, HBA, MW) from future analyses. The log
D descriptors with the lowest correlations and VIP values
(ACDlogD7.4 and experimental logD7.4) were also omitted from
future analyses.

Several combinations of the remaining variables were ana-
lyzed. The best models were obtained by combining any of the
remaining lipophilicity descriptors (ACDlogD6.5, ACDlogD6.0,
ACDlogD5.5) with HBD and/or PSA. The number of compo-
nents in these models was one, and theQ2 andR2 values of the
models were between 0.68 and 0.76. The equations and theQ2

andR2 values of the models combining ACDlogD6.0 with PSA
and/or HBD are given in Table 4. The logKa values predicted
with model 1a are plotted against the experimental logKa values
in Figure 4.

All the above analyses were carried out using 22 of the 23
drugs in data set 1. Acetylsalisylic acid was excluded from the
analyses as it was found that the largeKa value determined for
it did not correlate with its physicochemical parameters (Tables
1 and 2): The inclusion of this drug would have lowered the
Q2 andR2 values of the PLS models 1a, 2a, and 3a by about
0.06 units. The lack of correlation might be explained by the
po plasma time-concentration data used in determining theKa

value. The oral absorption from a soluble acetylsalisylic acid
formulation was reported to be slower in another investigation62

than in the investigation used in the present study (tmax ) 20
min vs tmax ) 10 min).

The developed PLS models were further validated by dividing
the drugs in data set 1 into a test set and a training set. Eight of

the 22 compounds were selected for the training set (Figure 1).
The training set compounds were then used to develop PLS
models that combine ACDlogD6.0 with HBD and/or PSA. The
remaining 14 test set compounds were used to validate the
developed PLS models (models 1b, 2b, and 3b). The results of
these PLS analyses are given in Table 4.

Correlating ACDlogD Values with Experimental log D
Values. Since the computationally predicted values of logD
are sometimes inaccurate, we decided to compare the ACDlogD
values of the compounds used in our analyses to their
experimental logD values. Because experimental logD values
at pH 5.5, 6.0, or 6.5 were found only for a few compounds,
the available logD7.4 parameter was used in the analysis. An
extensive literature search yielded experimental logD7.4 values
for 22 of the 23 compounds in data set 1 and for 85 of the 170
compounds in data set 2. The correlation between the experi-
mental and computational logD7.4 values of the drugs in data
set 1 was found to be excellent (R2 ) 0.96, RMSE) 0.31,
range of the experimental values) -1.9-4.2). The correlation
between the experimental and computational logD values of
the drugs in data set 2 was also very good (R2 ) 0.86, RMSE
) 0.59, range of the experimental values) -1.9-4.8).

Correlation between Predicted logKa and Experimental
FA. The PLS models 1a, 2a, and 3a were further tested by using
them to predict the logKa values of 169 of the 170 drugs in
data set 2. Digoxin was left out of the analyses because in the
work of Zhao and co-workers5 the PSA value was considered
to be unreliable by the authors. For five of the poorly absorbed
drugs (FA under 0.05), it was not possible to calculate a logD
value with ACD/logD. For these drugs, the logP value
calculated with ACD/logP was used.

When the predicted logKa values of the 169 drugs were
plotted against experimental FA values, it could be seen that
the log Ka values followed fairly nicely the sigmoidal curve
modeling an ideal relationship between logKa and FA over the
entire range of values. The curve modeling the ideal relationship
was calculated with the CAT model equation (eq 4). The log

Figure 3. Variable importance plot from PLS analysis with 11
molecular descriptors.

Table 4. Equations and Statistics of Derived PLS Models

model equation Q2 R2 RMSEa RMSEPa

1a logKa ) 0.623+ 0.154 logD6.0 - 0.007(PSA) 0.75 0.76 0.25
1b 0.82 0.84 0.26 0.29
2a logKa ) 0.424+ 0.143 logD6.0 - 0.129(HBD) 0.74 0.75 0.26
2b 0.75 0.80 0.29 0.29
3a logKa ) 0.636+ 0.098 logD6.0 - 0.004(PSA)- 0.088(HBD) 0.69 0.71 0.28
3b 0.80 0.87 0.26 0.36

a RMSE ) root-mean-squared error for the training set; RMSEP) root-mean-squared error for the test set.

Figure 4. Correlations between predicted and experimental logKa

values. The logKa values were predicted using model 1a. The straight
line shows the ideal relationship between predicted and experimental
values.
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Ka values predicted with model 1a are plotted against the
experimental FA values in Figure 5. The dashed lines show
(20% deviation from the ideal FA.

Discussion

This is the first study that predicts oral absorption on the
basis of human absorption rate constants derived using a
deconvolution approach. Models for predicting passive intestinal
absorption kinetics were derived by correlating theKa values
of a set of 22 structurally diverse drugs with computational
molecular descriptors. Multivariate PLS analysis showed that
the most important parameters describing logKa were PSA,
HBD, and the lipophilicity descriptors ACDlogD6.5, ACD-
logD6.0, and ACDlogD5.5. Combining PSA and/or HBD with
any of the logD descriptors resulted in statistically similar
models withQ2 andR2 values ranging from 0.68 to 0.76.

Linear correlations between logKa and the molecular descrip-
tors also showed that the logD descriptors, HBD, and PSA are
important parameters in explaining logKa (Table 3). Of the log
D descriptors, the highest correlation was found with ACD-
logD6.0 (Q2 ) 0.54,R2 ) 0.61) and the lowest correlations were
found with ACDlogD7.4 and experimental logD7.4 (Q2 ) 0.35,
R2 ) 0.49 andQ2 ) 0.34,R2 ) 0.48). This finding might reflect
the fact that the pH in the intestine is nearer to 6 than 7.4. No
correlation was found between logKa and MW, which is
generally considered an important predictor of absorption. The
lack of correlation might be due to the narrow molecular weight
range (144-384) of the molecules investigated. Most of the
conventional drugs lie in this weight range, however.

In an earlier study, the human jejunalPeff values of a set of
13 passively absorbed compounds were correlated with a
number of physicochemical descriptors9 using multivariate data
analysis. The analysis, although performed using a limited
number of compounds, yielded three models with good statistics.
Of the three models, the one combining computational PSA and
HBD with experimental logD5.5 was the best predictor ofPeff.
Thus, the same combination of descriptors is a good predictor
of bothPeff andKa. In a later study, Winiwarter and co-workers10

used different hydrogen-bonding descriptors in an attempt to
improve the models developed earlier. However, as they
themselves stated, the developed models were not better than
the models previously reported.

The studies of Winiwarter and co-workers9,10demonstrate that
the method of determining human jejunalPeff,63 although too
complicated for routine assessment of a compound’s intestinal
absorption kinetics, provides information that can be used in
the search for the molecular descriptors determining human
intestinal absorption kinetics. However, there are some problems
in the use ofPeff: there is a considerable error associated with
the Peff value measurements,3 Peff has been determined only
for a limited number of compounds, andPeff values9 do not
correlate very well with FA (Figure 6). In light of this, it could
be argued that the study of the relationships between absorption
kinetics and molecular descriptors should rely onKa values that
correlate well with FA (Figure 6). The finding thatKa correlates
better thanPeff with FA indicates the ability ofKa to describe
the overall absorption kinetics better thanPeff that is related to
the absorption restricted to a 10-cm segment of the jejunum.

It should be taken into consideration that, in the data set of
Winiwarter and co-workers,9 dissolution, not permeability, may
limit the in ViVo absorption of some of the compounds. However,
according to the work of Zhao and co-workers,5 the absorption
of all of the compounds except enalaprilat is limited by
permeability and not dissolution. Thein ViVo absorption of
carbamazepine, which does not belong to the data set of Zhao
and co-workers,5 is probably limited by dissolution. Experi-
mental error in the FA values obtained from the literature may
also contribute to the poor correlation betweenPeff and FA;
however, any possible error is not likely to affect the correlation
significantly. The FA values were taken from the work of Zhao
et al.6 for all the compounds except carbamazepine, which does
not belong to their data set. The FA value of carbamazemine
was taken from the work of Zhu and co-workers.14

Figure 5. Correlation between predicted logKa values and experimental
FA values. The logKa values of 169 of the 170 compounds in data set
2 were predicted using model 1a. Digoxin was left out of the analyses
because in the work of Zhao and co-workers5 the PSA value was
considered to be unreliable by the authors. Compounds depicted with
open symbols belong to data set 1. The deviating logKa values of the
five compounds depicted with triangles could be explained by errors
in the computational ACDlogD values. The dashed lines show(20%
deviation from the ideal FA.

Figure 6. (a) Experimental logKa values plotted against experimental
FA values. The logKa values of the 23 compounds in data set 1 follow
fairly nicely the sigmoidal curve modeling an ideal relationship between
log Ka and FA. (b) Experimental logPeff values plotted against
experimental FA values. The experimental logPeff values of the 13
compounds in the data set of Winiwarter and co-workers9 do not follow
the sigmoidal curve modeling the ideal relationship between logPeff

and FA. The compounds in the data set of Winiwarter and co-workers9

with possible dissolution rate-limited absorption are depicted with open
squares. The original CAT model equation was used to model the ideal
relationship between logPeff and FA, and eq 4 was used to model the
ideal relationship between logKa and FA. The dashed lines show(20%
deviation from the ideal FA.
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The PLS models developed in this work were further tested
by using them to predict the logKa values of a set of 169 drugs.
The predicted logKa values were then plotted against the
experimental FA values of the 169 drugs (Figure 5). A good
correlation between the predictedKa values and experimental
FA values was found over the entire range of values. The
correlation might have been even better if the actively trans-
ported compounds had been removed from the data set.

Although our analysis showed that the predicted ACDlogD7.4

values of the compounds used to evaluate our models correlated
well with experimental logD7.4 values, the poor correlation of
some of the predictedKa values with FA (Figure 5) could be
explained by errors in ACDlogD values; it was found that the
three compounds with the largest differences between the ACD/
Labs and experimental logD7.4 values were compounds whose
predictedKa values did not follow the sigmoidal curve modeling
the ideal relationship between logKa and FA. These compounds
and their predicted and experimental logD7.4 values were as
follows: (1) amiloride, 0.94 and-0.86; (2) timolol,-1.4 and
0.03; (3) terazosine,-1.01 and 1.14. Furthermore, the unexpect-
edly high predictedKa values of netivudine and oubain might
be due to errors in their computational ACDlogP values which
were significantly higher than their computational ClogP values
(netivudine, 0.2 and-2.03; oubain,-1.64 and-4.58). Experi-
mental logD values were not available for these compounds.

It is noteworthy that the average error in the prediction of
log D with ACD/Labs is likely to be higher for newly
synthesized compounds with structures that differ from the
compounds used in our analyses. This results partly from the
established or commercial drugs being included in the training
set of the ACD/Labs software. It would naturally be better to
use an experimentally determined logD value in predicting the
Ka value of a compound that has poorly characterized substit-
uents. Experimental determination of logD can, however, be
performed on selected compounds later in the drug discovery
process. The excellent correlation between the experimental log
D7.4 and ACDlogD7.4 values of the compounds used to build
the models (R2 ) 0.96, RMSE) 0.31) indicates that our models
are based on logD values that are close to experimental values.

It should also be noted that although the models predicted
log Ka values that correlated well with experimental FA values
for even the poorly absorbed compounds that did not fit into
the elliptic 95% tolerance volume of the score plot (Figure 1),
they are not applicable for predicting theKa values of peptides,
polysaccharides, or other compounds that do not fit into the
defined property space.

Easy computational prediction of theKa value of a drug is a
valuable addition to the tools used by pharmaceutical industry
to facilitate the process of selection of new drug candidates.
Compared with predicted FA, predictedKa is more informative
in the drug discovery process because the rate of absorption
among completely absorbed drugs can vary. In this work, the
Ka values of the drugs with FA values of 1 varied over an order
of magnitude (0.15-6.4 h-1, Table 2).Ka is also useful in the
early design of release profiles of drug formulations. Unlike
FA values,Ka values can be easily combined with absorption
models such as the CAT model.60 Together with a systemic
pharmacokinetic model, the CAT model could be used to predict
the plasma concentration-time profile of a drug. This naturally
would require also the prediction of the systemic clearance of
the drug, which is not yet possible. Thus, the prediction ofKa

is the first step toward the aim to predict the plasma concentra-
tion-time profile of a drug.

Conclusions
It was found that the logKa values of a set of 22 structurally

diverse drugs, derived from human plasma time-concentration
profiles with a deconvolution approach, followed nicely the ideal
sigmoidal relationship prevailing between a parameter describing
the kinetics of oral absorption and FA. When multivariate PLS
analysis was applied to establish the relationships between the
log Ka values of the 22 drugs and simple computed molecular
descriptors, three models with good statistics and predictivity
were derived. The results showed that, by using a combination
of two or three (ACDlogD6.0 combined with PSA and/or HBD)
simple, rapidly computed molecular descriptors, it is possible
to predict passive intestinal absorption kinetics in humans. The
present method, which enables easy computational prediction
of passive absorption, is a promising addition to the tools used
by the pharmaceutical industry to facilitate the process of
discovery and development of drugs.
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